An attack on Gauss, published by Legendre in 1820

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss-Legendre principal value integration

few problems lend themselves to closed-form solution, we often need to convert formal definitions into practical numerical methods. One such problem deals with the Principal Value integral, which many students encounter in a course on functions of a complex variable. However, the prospect of evaluating one numerically might seem rather daunting. To the best of my knowledge, the subject remains ...

متن کامل

Gauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region

This paper presents a Gaussian quadrature method for the evaluation of the triple integral ( , , ) T I f x y z d xd yd z = ∫∫∫ , where ) , , ( z y x f is an analytic function in , , x y z and T refers to the standard tetrahedral region:{( , , ) 0 , , 1, 1} x y z x y z x y z ≤ ≤ + + ≤ in three space( , , ). x y z Mathematical transformation from ( , , ) x y z space to ( , , ) u v w space maps th...

متن کامل

Interpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature

We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss-Lobatto-Legendre-Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB interpolation in Jacobi weighted Sobolev spaces. We also present a useroriented implementation of the pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach al...

متن کامل

Acceleration of Gauss-legendre Quadrature for an Integrand with an Endpoint Singularity

An asymptotic error expansion for Gauss-Legendre quadrature is derived for an integrand with an endpoint singularity. It permits convergence acceleration by extrapolation.

متن کامل

Two Point Gauss–legendre Quadrature Rule for Riemann–stieltjes Integrals

In order to approximate the Riemann–Stieltjes integral ∫ b a f (t) dg (t) by 2–point Gaussian quadrature rule, we introduce the quadrature rule ∫ 1 −1 f (t) dg (t) ≈ Af ( − √ 3 3 ) + Bf (√ 3 3 ) , for suitable choice of A and B. Error estimates for this approximation under various assumptions for the functions involved are provided as well.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Historia Mathematica

سال: 1977

ISSN: 0315-0860

DOI: 10.1016/0315-0860(77)90032-5